
Mobile Data Harvester
Senior Design Project

Prepared By:
Taylor Jones

Abraham Palmerin
Joshua Papanicolas

Faculty Advisor: Dr. Farid Farahmand
Industry Advisor: Sean Headrick

Client: Dr. Chris Halle

May 3, 2017

www.dataharvester.weebly.com

1



Abstract

A key component in preserving and understanding the environment and
its ecosystems is the ability to collect environmental data continuously and
reliably. Collecting environmental data using passive data loggers and manual
downloading can be a daunting task. Today, for many scientists the application
of various environmental sensor networks has become the standard research tools
for data collection. However, these networks are often unable to cover a wide
geographical area. Furthermore, implementing massive environmental sensor
networks without damaging the ecosystems in order to provide connectivity
and power to the sensors can be challenging.

Over the last several years the Unmanned Aerial Vehicle (UAV) technol-
ogy has been widely proposed and utilized in commercial and civilian activities,
particularly in the areas of remote environmental monitoring, sensing, and map-
ping. For example, UAVs are being used for acquisition of remotely sensed data
and imagery. In such applications the UAV carries a variety of small airborne
sensors such as cameras and Lidars.

In this work we discuss the hardware and software design of our proposed
UAV-based Mobile Data Harvester and its ability to reliably and continuously
collect and transfer environmental data.

The Mobile Data Harvester consists of multiple solar-powered ground-based
stationary sensor nodes and a mobile node that can be mounted on a UAV. Each
low-cost low-power stationary sensor node is capable of logging the environmen-
tal data (e.g., temperature, soil moistures, humidity). Once the mobile node
reaches its pre-programed GPS location via the UAV, it requests data transmis-
sion from the stationary node. Consequently, the logged data is transferred via
ZigBee wireless protocol and eventually removed from the stationary node.

In this paper we also report on key performance factors of the Mobile Data
Harvester, including aerial position accuracy, data transmission time, power
consumption, and the vertical operating range of the wireless communication.
We conclude the paper by presenting potential ideas to improve and enhance
the overall system performance.

2



Contents

1 Introduction 6
1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Marketing Requirements . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Engineering Requirements . . . . . . . . . . . . . . . . . . . . . . 10

2 Implementation 11
2.1 Design Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Key Components . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Resolved Problems . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Common Problems . . . . . . . . . . . . . . . . . . . . 17

2.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 ER2: Range testing w/ improved modules and antennas 18
2.3.2 ER11: Packet Size Test . . . . . . . . . . . . . . . . . . . 18
2.3.3 MR1: Transmission Time Minimum . . . . . . . . . . . . 19
2.3.4 MR1: Power Tests . . . . . . . . . . . . . . . . . . . . . . 20
2.3.5 ER11/MR11: Packet Size Calculation . . . . . . . . . . 20
2.3.6 ER10/MR4: Range Test 3 . . . . . . . . . . . . . . . . . 22
2.3.7 ER3/MR6: SD Card Test . . . . . . . . . . . . . . . . . 23
2.3.8 ER4: Xbee General Test . . . . . . . . . . . . . . . . . . 23
2.3.9 ER6/ER7: Dimensional Measurements . . . . . . . . . . 24
2.3.10 ER8/MR8: Solar Charger Test . . . . . . . . . . . . . . 25
2.3.11 ER9: GPS Test . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.12 ER9/MR5: Downed Node Test . . . . . . . . . . . . . . 28
2.3.13 ER5/MR3: Sensor Tests . . . . . . . . . . . . . . . . . . 28
2.3.14 ER5/ER6/MR9: Solar-Powered Ground-Based Sensor

Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.15 MR7: MATLAB Test . . . . . . . . . . . . . . . . . . . . 33
2.3.16 MR12: Long Term Test . . . . . . . . . . . . . . . . . . 34
2.3.17 MR4/ER1/ER4: UAV Test . . . . . . . . . . . . . . . . 36
2.3.18 MR3/ER4/ER5/ER9: Moving Mobile Node Test . . . 37
2.3.19 Final Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Ethics of the Engineering Profession and Our Project 40

4 Future Work 41

5 References 42

3



6 Appendix 43
6.1 Detailed Budget . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Example Customer Survey . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Circuit Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3.1 Mobile Node . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3.2 Sensor Node . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3.3 Sensor Power Supply . . . . . . . . . . . . . . . . . . . . . 47

7 A Special Thanks 48

List of Figures

1 Overall Functional Diagram . . . . . . . . . . . . . . . . . . . . . 11
2 Programming Flowcharts: Left: Mobile Node. Right: Sensor Node. 13
3 Wireless Protocol Timing Diagram between each Sensor Node

and the Mobile Node . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Project Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 Range Test of Series 1 Xbee vs Series 2 Xbee with antenna . . . 18
6 Left: AT Test Right: API Test . . . . . . . . . . . . . . . . . . . 18
7 Model of a Moving Mobile Node Communicating with Sensor Node 19
8 Top: Table of Simulated Values, Bottom: Plot of Simulation . . . 19
9 Range Test with Loss Over Time for 500ft with Xbee Pro S3B . 22
10 Range Test with Loss Over Distance for 1000ft with Xbee Pro S3B 22
11 Left: SD Card on a WF32 Board. Right: CSV File Generated. . 23
12 Left: Mobile Node (left) and Sensor Node (right) Communicat-

ing. Right: Serial Monitor displaying packets received by Mobile
Node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

13 CAD drawing of Preliminary Shell Design (by Sean Headrick) . . 24
14 Battery Charge Test Over Time . . . . . . . . . . . . . . . . . . . 26
15 Battery Discharge Test Over Time . . . . . . . . . . . . . . . . . 26
16 Plot of proximity Mobile Node must be within Sensor Node to

communicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
17 DS18B20 Weatherproof Temperature Sensor . . . . . . . . . . . . 29
18 Temperature Probe in Ice Bath . . . . . . . . . . . . . . . . . . . 29
19 Temperature Sensor Serial Monitor Results . . . . . . . . . . . . 29
20 Left: Our SHT10 Soil Sensor by Sensirion Right: The AM2315

Humidity Sensor by AOSONG . . . . . . . . . . . . . . . . . . . 30
21 Left: Soil Moisture Test Location Right: Patch of soil . . . . . . 30
22 Left: Hydrosense II screenshot Right: Hydrosense probe in soil . 31
23 Humidity at Pepperwood Preserve Dwight Center Weather Station 31
24 A look inside a sensor node case . . . . . . . . . . . . . . . . . . 32
25 An outdoor photo of a complete sensor node with solar panel . . 32
26 Program Successfully Saving GPS Coordinates . . . . . . . . . . 33
27 Screen shot of 15 hour long term data in thirty minute intervals . 34

4



28 Sensor node device ran from around 9:00 am to around 5:00 am
the next day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

29 Picture of Abraham Palmerin with Sean Headrick piloting the UAV 36
30 Left: 50 ft Radius. Right: 200 ft Radius. . . . . . . . . . . . . . . 37
31 Fairfield Osborn Preserve: Left: UAV Flight Path with 200 ft

Radii Right: Data in Excel . . . . . . . . . . . . . . . . . . . . . 38
32 System Diagram of Mobile Node . . . . . . . . . . . . . . . . . . 39
33 System Diagram of Sensor Node . . . . . . . . . . . . . . . . . . 39

List of Tables

1 Example of the packet being sent by the sensor node . . . . . . . 12
2 Example Excel layout the client will be able to view from the

collected data the mobile node received . . . . . . . . . . . . . . 12
3 Power Usage of Each using 5V Supply (in Amps and Watts) . . . 20
4 Break Down of Size of 1 Data Packet . . . . . . . . . . . . . . . . 21
5 Mobile Node Dimensions . . . . . . . . . . . . . . . . . . . . . . . 24
6 GPS Value Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7 Complete Budget . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5



1 Introduction

In many fields that make use of sensors to gather data, there is a need
to place sensors in remote areas. In some cases these places are hard to get
to, dangerous, or cause a hassle to the person who needs to get there by foot
or vehicle due to its remote location. A few examples include, gathering data
from tree tops, mountainous regions, and getting data from deep forests. There
must be a way to access these secluded areas more than once without the hassle
of having to continuously go back just to get some data. We are proposing a
system that will allow the user to gather data from such sensors in a much more
convenient and safer manner. This system will employ low power remote sensors
and will be durable enough to withstand wilderness and weather conditions.
These sensors will gather a multitude of data like temperature, precipitation,
air quality, etc. The data will be logged and then extracted by the user wirelessly
through a mobile platform. This platform could be applied to a multitude of
different modes of transportation, but in the case of this project we will be
mounting it onto a unmanned areal vehicle (UAV).

1.1 Literature Review

Similar Products and Ideas:
For comparisons between these and our project see methodology.

1. Remote Sensing Using UAVs

Similar concept except they use the drone as a wifi relay to stream live
data from the sensors. [4]
https://people.kth.se/ gonga/remoteuav.html

2. RFID-Reading Drone Tracks Structural Steel Products in Stor-
age Yard

Steel company uses drones and RFID to track their stock. [2]
http://www.rfidjournal.com/articles/view?12209

3. Drone Scan

Company makes drone systems involving RFID and barcode scanners
(mounted on the drone) to help warehouses track their stock. [1]
http://www.dronescan.co/

4. Satellite Connected Sensors

Alternative idea where instead of using drones to gather the data from the
sensors they use a satellite link to directly gather the data from remote
sensors. [9]
https://www.technologyreview.com/s/538726/nano-satellites-work-with-ground-
sensors-to-offer-new-eye-on-disaster-relief-and/

5. Sensor Buddy

Similar project done at this school. Our project is essentially an extension
of this. [10]
spott79.wixsite.com/spott-weiss

6



1.2 Problem Statement

As stated before, a major issue with placing sensors in remote areas is ease
of access. If one wanted to, for example, measure average temperatures deep
in a forest, on a glacier, or near a volcano, gathering said data could not only
create unnecessary extra travel time for the user, but could even be dangerous.
A better method than walking to each sensor and manually gathering the data
would be to have it done automatically from a distance. One could have the
sensors connected to a network that is connected to the internet allowing for
constant access, but if the sensors are in a very remote location that might not
be an option due to cost, lack of access, or the slow speed of satellite connections.
One could also create their own network through the use of multiple relays that
eventually connect to a central station, but if the sensors are placed in a very
wide spread configuration and in a very remote location, the number of relays
required could be make the system too costly and complicated to set up and
maintain. Lastly, if one simply used a long range radio transmitter, while the
network would be simple, power required would be too much for a small battery
and solar panel.

1.3 Methodology

We propose to solve these problems through the use of a short distance
connection on a local network. The sensors will be connected to a network of
wireless nodes (we’ll call these ”sensor nodes”). Each of these sensor nodes
will be taking samples of data over a user defined interval (we will be doing
30 minute intervals for the demonstration) and saving the data onto a SD card
mounted to the device. The data will include a variety of data from different
sensors mounted to the node, a time stamp for each sample, and a unique label
corresponding to that node. A UAV will be controlled remotely and fly over
each of these nodes. A node mounted on the UAV (we’ll call this the ”mobile
node”) will send a radio signal (via the ZigBee protocol) that will activate the
sensor node which will in turn send its data back to the mobile node via another
ZigBee radio signal and then deactivate. The mobile node will use GPS to tell
its location so that it can know if it is at the right location before starting the
transmission to help ensure a strong connection is available. After obtaining the
desired data, the UAV can then travel back to its starting location where the
user can retrieve the data from an SD card and upload it onto their computer
via a program that we will provide.

The project is different than its competition for a variety of reasons. One
major advantage of our system is that the modular nature of it allows for it to
be used with platforms aside from UAVs and could be attached to any mobile
system whether it be a car or even a person. Most UAV data gathering systems
of this kind simply use visual techniques (eg various IR or hyperspectral cam-
eras that are simply strapped to the UAV itself) [2][3][6], while our system is
compatible with a variety of different sensors (ideally we would like this to be
a modular system that could be implemented with any kind of remote sensor)

7



and uses sensors that are always on site. It is also possible to make the system
completely autonomous (aside from the user’s initial placement of the sensors).

To address the question of why not just use a satellite connection on each
sensor? Such systems exist, but as said before, tend to be costly due to the
need to access a satellite (where one would likely need to pay a fee to use). The
implementation of low orbit nanosatellites have been used before as well, but
such systems can be even more costly to implement and even more so it were
to fail (the nanosatellite breaks)[9]. Our system would be a one time purchase
that could be used many times over and will be easier to repair if something
were to go wrong (a sensor goes down or the UAV crashes), thus it would be
a cheaper alternative. It is also independent of any outside networks and thus
can be more reliable since the user is using their own network.

As mentioned previously, the use of wireless relays are a common method
to gather remote data. One of the examples from above even expands on this
concept by having a UAV that acts as a temporary relay [4]. Unfortunately,
these systems still have the issue of becoming overtly complicated and costly
when a large number of sensors are placed in wide spread and very remote areas.

Lastly, in comparison to a previous project done at our school that heavily
inspired our project, there are many key differences and improvements that we
have performed. One is that their system was designed around the use of having
their equivalent to the mobile node in a backpack to be carried around, while
our system is designed around being mounted onto a UAV and thus has to be
much more compact[10]. Then, their system used only one sensor per node,
while ours works with multiple, different kinds of sensors. Lastly, our system
has been tested for multiple sensor nodes (3), has autonomous capabilities, and
uses GPS proximity detection to better ensure a good connection is possible
before transmission[10].

1.4 Challenges

We must keep our circuit board to a limited dimension so it can be at-
tached to the UAV without interrupting its balance. Our board must be able to
distinguish which sensor is which and where that specific sensor is located. We
must maintain power efficiency throughout the process so our sensors will only
be activated when the UAV is nearby and when taking a data sample. There
will also be a system that will allow the UAV mounted system to make note
of unresponsive sensor nodes and report this information to the user. We must
maintain a distance of under 300 ft between our board and nodes. The nodes
will also be about 100 ft. from each other. The packets being sent should not be
so large that it makes the travel time to gather the data too long, since for the
case of using a UAV we are limited by its battery life. The implementation of an
SD card to a microcontroller system can be difficult. Also, the communication
between the Xbees in the manner we are using them can be complicated.

8



1.5 Marketing Requirements

(MR1) Guaranteed battery life up to 30 minutes for the mobile node on the UAV.
(See test 2.2.5 and test 2.2.4)

(MR2) User will need an FAA license to operate the UAV. (see SSU UAV
policy)

(MR3) Sensor nodes will support multiple sensors (soil, humidity, and tempera-
ture). (See test 2.3.14 and test 2.3.18)

(MR4) Can reach areas that are difficult to reach by foot. Up to a 90 meter
radius. (see test 2.2.7 and test 2.3.17)

(MR5) Flag is initiated when a certain sensor is unresponsive. (See test 2.2.13)

(MR6) User can receive data directly from the mobile node SD card. (See test
2.2.8)

(MR7) Overall data information will be uploaded through a Matlab program dis-
playing: node ID, sensor data, time, date, GPS coordinates. (see test
2.2.15)

(MR8) Sensor node batteries do need to be manually recharged or replaced. (see
test 2.2.11)

(MR9) Node will be placed in weather-proof casings to protect them from damage
and will be durable enough to withstand outdoors conditions. eg rain, etc.,
(won’t necessarily withstand tampering from wildlife such as bears, etc.).
(See future work)

(MR10) Both sensor and mobile nodes (without the sensors) will cost under $60
per node. (see cost calculations)

(MR11) Data accurate to three significant figures. (See test 2.2.6)

(MR12) The system must be able to function over long periods of time without
maintenance (months) (See test 2.2.16)

9



1.6 Engineering Requirements

(ER1) 5 volts supplied by the power supply of the UAV to the mobile node. (See
test 2.2.5 and test 2.3.17)

(ER2) Data will be transmitted and received up to 300 feet. (See test 2.2.1
and 2.2.2)

(ER3) Data is transfered to the user’s computer by use of an SD card. (See test
2.2.8)

(ER4) Will use ZigBee wireless protocol for low power consumption (will have low
data rate of 250 kbps). (See test 2.2.9, test 2.3.17 and test 2.3.18)

(ER5) Can support at least 3 sensors at a time on each sensor node. (See test
2.2.14 and test 2.3.18)

(ER6) Mobile node PCB will be 3x 3 so it can be placed easily on a medium to
large sized UAV. (see test 2.2.10)

(ER7) Mobile node will weigh no more than 5 ounces.(see test 2.2.10)

(ER8) Sensor nodes will be powered by solar charged batteries. (see test 2.2.11)

(ER9) Mobile node will use a GPS module to know when to receive data and also
check to see if a sensor node is being unresponsive. (See test 2.2.12, test
2.2.13, and test 2.3.18)

(ER10) Each Xbee module will have attached 900 Mhz band rubber duck antenna
(RPSMA connector). (see test 2.2.7)

(ER11) The size of the data packet size must be restricted so that transmission
doesn’t take too long or the data takes up too much space in the sensor
node’s flash memory (around 32 bytes per data set) (See test 2.2.3 and
2.2.5)

10



2 Implementation

Our Mobile Node consisted of a Digilent WF32 board with an on board
micro SD card module. The mobile node is attached to a UAV traveling to each
Sensor Node in order from Sensor Node 1 to Sensor Node 3, it must travel in
this order in order to prevent crosstalk and confusing the Mobile Node. Data
transmission will not begin until the Mobile Node is within the specified GPS
coordinate radius of the specific Sensor Node. Once within range, the Mobile
Node will transmit a flag to the Sensor Node telling it to transmit all of its data
saved onto its SD card. The Sensor Node consists of a Digilent Uc32, which is
a lower end variation of the WF32 chosen to help conserve power. It is powered
by a solar panel and battery. Once the data has been confirmed to have been
received, the Mobile Node sends another flag to the Sensor Node telling it to
clear its old data. Once the Mobile Node receives data from all three Sensor
Nodes, the UAV then return to the user who can retrieve the SD card and
put it into their computer where a provided Matlab program will organize the
data and tell them if anything went wrong. The program also allows them to
program the GPS coordinates of each Sensor Node into the Mobile Node.

Figure 1: Overall Functional Diagram

11



Node Number Date/Time Number Temperature Soil Moisture Humidity
1 2017/3/14 11:18:25 64.32 322.43 55

Table 1: Example of the packet being sent by the sensor node

Node
Number

Date Time Temperature
(C)

Soil
Moisture
(mm)

Humidity
(%)

Latitude Longitude

1 11/27/2016 11:45 PM 64.32 322.43 55 51.434491 -3.789107
1 11/27/2016 12:45 PM 64.12 321.1 55 51.434491 -3.789107
. . . . . . . .
. . . . . . . .
. . . . . . . .
2 11/27/2016 11:40 pm 63.57 302.67 53 51.425672 -3.760387

Table 2: Example Excel layout the client will be able to view from the collected
data the mobile node received

2.1 Design Approach

Each node was programed using C++ using a modified variation of the
Arduino IDE for Digilent products.

The Mobile Node starts by waiting until it is within the preset GPS radius
of the first Sensor Node. Once it is, it broadcasts a flag until it starts receiving
a data packet. If it doesn’t get anything for over a minute, it starts looking
for the GPS location of the next Sensor Node. Once it starts getting data, and
there are no interruptions (if there is a gap in the data transmission it starts
sending flags again and will continue where it left off in keeping track of the one
minute time limit), it will keep reading data until it receives a flag indicating
that the transmission is complete. It will then send one last flag back indicating
a successful transmission, save the data onto its SD card, and start looking for
the GPS coordinates of the next Sensor Node until it has done so for all three
nodes. After which it will go into an idle state.

The Sensor Node idles until a half hour has passed, after which it will read
a sample from each of its sensors and record those values onto its SD card. It
will continue to do this indefinitely. At the same time, it is constantly looking
for a flag from the Mobile Node to begin the transmission. If it does, it will
start sending all of the data it has stored and send a flag at the end once it
has finished. It will then wait until it either receives the previous flag again
for retransmission, or the flag indicating a successful transmission after which
it will delete its old data and go back into an idle state taking samples every
half hour again.

12



Figure 2: Programming Flowcharts: Left: Mobile Node. Right: Sensor Node.

13



Figure 3: Wireless Protocol Timing Diagram between each Sensor Node and
the Mobile Node

This Timing Diagram takes place as soon as the Mobile Node is within
the defined GPS coordinates of the Sensor Node. The mobile node sends a
transmission flag to the Sensor Node, then the sensor node will send its data with
an acknowledgement. The mobile node will then send another acknowledgement
and travel to the next Sensor Node and repeat the process.

2.1.1 Schedule

Due to the time limit constraints of this project we need to plan out our
schedule carefully. Below a gantt chart summarizes our planned schedule. Each
person did a portion of the project individually, with assistance from their team
members. Taylor Jones worked mostly on designing, building, and programming
the Mobile Node. Joshua Papanicolas and Abe Palmerin worked together on
different parts of the Sensor Node with Joshua mostly working on the power
system and Abe mostly working on implementing the sensors and Xbee interface.

14



F
ig

u
re

4:
P

ro
je

ct
S

ch
ed

u
le

15



2.1.2 Key Components

1. 3.7 volt batteries (4)

2. Pic32 Microcontrollers (PIC32MX695F512L) (1)

3. Pic18 Microcontrollers (PIC18F45K22) (3)

4. Printed Circuit Boards (10)

5. Xbee Radio Module (S3 Pro) (4)

6. Xbee breakout boards (4)

7. Sensors (9) (3 temperature, 3 humidity, 3 soil moisture)

8. electrical components (wire, capacitors, resistors)

9. 32 GB micro SD card(4)

10. Device casings(4)

11. GPS Module (1)

12. Real Time Clock Module (4)

13. Solar Panels (3)

14. 900 Mhz Duck Antenna (4)

2.2 Challenges

2.2.1 Resolved Problems

1. Data duplication: This problem occurs when the data on the SD card
is not erased after the data has already been sent. However, since we have
programed the sensor node to erase the data after it has been sent, the
user will not have this issue.

2. Lost data: Data from the sensor node may be lost if bytes in the buffer
overflows. However, by adding a small delay while the buffer is being
processed, this will not be a problem for the user.

3. Sensor node unresponsive: If the sensor node is unresponsive, it can
be one of several problems. One possible case is that the sensor node is
not being powered by the power circuit, in which the battery has probably
died. If this is true, then the user will just need to wait until the battery
has been recharged by the solar panel. Another possible issue is either the
Xbee on the mobile node is not finding the Xbee on the sensor node or
vice versa. Therefore, the Xbees may need to be reset with the proper ID
or replaced if they have broken.

4. Solar Panel Circuit not providing enough power/ Battery dies:
In this case, the battery has died because the solar panel is not receiving
enough sun, and therefore is unable to charge the battery. The user will
need to wait until the solar panel has recharged the battery.

16



5. Data reliability: If the the sensors are not calibrated properly before
using out in the field, the data will not be reliable. Therefore, the sensors
should be calibrated.

6. Single sensor breaks on node: If data from a sensor is giving back all
zeros or NAN, then it is likely the sensor is broken and will need to be
replaced.

2.2.2 Common Problems

1. Possible interference from other x-bees in the field.

2. GPS returns all zeros for longitude and latitude for the first few minutes
of it being powered

3. Real Time Clock becomes inaccurate when backup battery runs out

4. Some data corruption occurs when device is first powered up and imme-
diately tries to do a transmission

17



2.3 Testing

An important part of product development is initial testing. In order to
properly design the initial prototype we must know what kind of limitations we
might encounter and what exactly we need to use in our product ahead of time
before we settle on exact specifications.

2.3.1 ER2: Range testing w/ improved modules and antennas

In this testing state we attempted to test the maximum range of the Xbee.
We used an Xbee Series 2 at 2.5 Ghz with larger antennas. We found that
we were able to transmit packages from over 120 meters (393 ft) away without
errors. That is over 90 feet further than our required 300 ft. We then conclude
that we will be using Series 2 or better Xbees with these antennas, or something
similar, in our product.

Figure 5: Range Test of Series 1 Xbee vs Series 2 Xbee with antenna

2.3.2 ER11: Packet Size Test

In this test, we wanted to see how long it took for a Xbee to transfer large
amounts of data. We found that in API mode it sent max 255 byte packets
maximum taking about 2 minutes to transfer about 30 kilobytes of data. Which
is a rate of 2.09 Kbps (kilobits per second). We also tested AT mode where it
was able to transfer 15 kilobytes in 18 seconds. We plan to use at least 3 different
sensor modules.

Figure 6: Left: AT Test Right: API Test

18



2.3.3 MR1: Transmission Time Minimum

For this test we calculated the possible amount of time the mobile node
would have to receive the data from a sensor node and the amount of data that
would be transferred. We found that based on the Xbee range, the device could
have between 12 and 30 seconds to receive the data at an altitude of 50m and
would receive between 3.9 - 9.4 kilobytes of data respectively.

Figure 7: Model of a Moving Mobile Node Communicating with Sensor Node

• Vd = average speed of the UAV (m/sec)

• Rd = range radius (m)

• Rx = max range of Xbee

• Rm = distance between mobile and sensor nodes (m)

• Ra = flight altitude = 50 m

• Tz = transmission range of the ZigBee = 20 Kbps - 250 Kbps

Rd = 2 ∗ (Rm
2 − Ra

2
)

ContactTime =
Rd

V d

DataTransmitted =
TransmissionRate ∗ ContactTime

8

Figure 8: Top: Table of Simulated Values, Bottom: Plot of Simulation

19



2.3.4 MR1: Power Tests

In these tests we measured the power consumption of both the mobile and
sensor node’s power consumption so that we could be sure that we could provide
enough power for a long enough time for our devices to be effective. The sensor
node must be powered indefinitely via a solar charged battery, while the mobile
node is powered by the battery of the UAV. The sensor node must not drain
the battery faster than it can be charged, while the mobile node must not use
so much power that it prevents the UAV from completing its flight.

To measure the current and power of the sensor node device, we connected
it to a 3.3 volt power supply. Once the sensor node was powered on and working,
we read the current of the device from the power supply unit for when the device
was transmitting and when it was not. We found the current when the sensor
node is transmitting to be 0.04 Amps. When it is not transmitting, that is,
idle, it produces a current of 0.03 Amps. Using the power equation, P=VI, the
power of the device while transmitting is 0.1328 Watts and 0.0996 Watts while
not transmitting.

Idle Transmission
Mobile Node 0.16 Amps, 0.8 Watts 0.2 Amps, 1 Watt
Sensor Node 0.03 Amps, 0.0996 Watts 0.04 Amps, 0.1328 Watts

Table 3: Power Usage of Each using 5V Supply (in Amps and Watts)

2.3.5 ER11/MR11: Packet Size Calculation

In order to ensure that the micro-controller’s built in flash can hold the
data that the sensor node will be saving onto it and to help us calculate the
transmission time of the data packets we need to know the exact size that these
packets will be. There are two ways in which we can store each data set that
is taken, one is to store them as a single string and the other is to store each
value individually as floating point numbers. For each packet, we are storing
and transmitting 4 different numbers.

For strings we will assume that we will be accurate to up to 6 significant
figures for the sensor data and the time is stored as a 10 digit number (UNIX
time format). Strings store each digit as a single character. Thus, we would
have 28 characters for the data, plus 3 more for each comma separating them,
and 1 more that is added invisibly by the string data structure in C++. Thus,
each data set will be 32 bytes (1 byte per character). This number will go up
by 3 for each significant figure that we would add if desired.

For floating point, no matter how big the number is (as long as it is smaller
than 2,147,483,647) each number will take up 4 bytes. Thus, using the same
data set of 4 numbers (this time with no commas, we would store each number
separately) each data set would also use 32 bytes. Except in this case each value
could be accurate up to 10 significant figures (again as long as it doesn’t go over
the size limit).

20



In conclusion, both of these methods of storing the sensor data are viable
with each having benefits and drawbacks. Using strings would be easier to
organize and transmit and would leave less work for the time sensitive mobile
node since it wouldn’t have to organize the data itself. But if we wanted to have
extra accuracy in our data, it would take up exponentially more space on the
flash. For floating point, we can be more accurate while using the same space as
a 6 significant figure accurate string data set, but it would be more complicated
to store, organize, and transmit.

We do not plan on being accurate over 6 significant figures and the flash
memory of the micro-controller can hold 1000 (or more if we use the program-
ming memory) 32 byte data sets on a a PIC32MX340F512, or about 500 (if we
use part of the programming memory) 32 byte data sets on a PIC18F45K22.
Which would equate to having to recover the data every 20 days for the PIC32
and every 10 days for the PIC18. Though both of these values can go up de-
pending on how much programming memory is left after we burn the chip.

Thus, we will be using strings to store our data, since it will be easier to
organize and transmit and we do not need the extra accuracy of full floating
point numbers.

Date/Time
Number (in
UNIX time)

Temperature Soil Moisture Humidity Commas Overhead Total

1486077022 64.3257 322.432 55.5437 3 Commas String
Structure in
C++

N/A

10 bytes 6 bytes 6 bytes 6 bytes 3 bytes 1 byte 32 bytes

Table 4: Break Down of Size of 1 Data Packet

21



2.3.6 ER10/MR4: Range Test 3

In this test we used the program XCTU to measure the RSSI (receive signal
strength indicator) between two nodes over distance and over time using Xbee
pro. In our test we were able to go over 500 feet without losing the signal. We
could have gone even further, but ran out of unobstructed space.

In another test, we measured the loss over range instead of time over 1000ft.
As seen from figure 11, there noticeable loss the further we got from the sensor
node. At the beginning and the end, the signal doesn’t change which is just a
discrepancy caused by the testing software we used (XCTU) where there wasn’t
a noticeable change in loss for the first few feet and at the end, the signal timed
out which appears as a flat line on the graph.

Figure 9: Range Test with Loss Over Time for 500ft with Xbee Pro S3B

Figure 10: Range Test with Loss Over Distance for 1000ft with Xbee Pro S3B

22



2.3.7 ER3/MR6: SD Card Test

The original plan for this portion of the device was going to involve a
PIC18F45K22 microcontroller and an external SD mount. Programming the
system to save files on an SD card can be challenging and is beyond the scope of
our knowledge, so we must use a library that will do all of this for us. First we
set up the device with the previously mentioned PIC and tried using a library
provided by Microchip, but found that it only officially supported certain con-
trollers. We found a third party library (FatFs by elm-chan) that was universal
for any controller, but was unable to get even that to function. We tried again
with an external oscillator as the clock (once with a crystal and again with
signal generator) thinking that the clock wasn’t a nearly perfect square wave
which is required for SD cards to function, but was still unable to save anything
on the card.

There is obviously a way to make this work, but due to time constraints
we had to switch to the WF32 board by Digilent (see appendix). This board
has a built on SD card mount and a controller with a bootloader that has a
predefined SD card library explicitly made for its controller. We were able to
easily get it to function and saved a text file with ”hello world” written in it.
After that we were able to save a fake data (ie defined in the code, not actually
measured) as a csv (comma-separated value) file which can easily be converted
into an excel file for the user (see MATLAB test (2.2.15)).

Figure 11: Left: SD Card on a WF32 Board. Right: CSV File Generated.

2.3.8 ER4: Xbee General Test

Our devices (the mobile and sensor nodes) will be communicating via the
ZigBee protocol via a transmitter called an Xbee. Our initial testing with these
device can be seen in the test 2.2.1, 2.2.2, and 2.2.3, but these test simply tested
range and transmission rate. We need to be able to send actual data via the
circuitry we will be using for the actual devices and not with the testing boards
and laptops we were using for these early tests. We set up preliminary circuits
to allow us to do these tests (see appendix: Circuits) and coded the controllers
on them to use the Xbees to transmit a packet of fake data from one sensor
node to the mobile node. In the test, we simply had the sensor node broadcast
the packet continuously every 2 seconds and had the mobile node receive the

23



packet and save it to the SD card continuously. We were able to successfully
do this test repeatedly (for a more vigorous example of this procedure see test
2.2.16).

Figure 12: Left: Mobile Node (left) and Sensor Node (right) Communicating.
Right: Serial Monitor displaying packets received by Mobile Node.

2.3.9 ER6/ER7: Dimensional Measurements

The Mobile Node will be placed on a UAV to be carried to each Sensor
Node due to them being placed far out in the wilderness. UAVs can be very
sensitive about the dimensions and weight of their payloads and thus we must
ensure that the mobile node isn’t too big or too heavy to be carried by a UAV.

Figure 13: CAD drawing of Preliminary Shell Design (by Sean Headrick)

Length Width Height Weight
8.9 cm 5.3 cm 2.9 cm 90.17g

Table 5: Mobile Node Dimensions

We simply measured the dimensions with a ruler due to not needing exact
precision and measured the weight with a digital scale (provided by the SSU
Chemistry Department).

The device will be placed in a custom shell provided and designed by Sean
Headrick of Aerotestra.

24



2.3.10 ER8/MR8: Solar Charger Test

To power our sensor nodes at each station, we will use a solar panel and
lithium ion batteries. For our initial tests, we used a 2.5W 5V/500mAh solar
panel and two 3.7/1200mAH lithium ion cell batteries in parallel. In between
the solar panel and batteries is a 5V charger board, used to charge the batteries
from the solar panel. From the charger board, we connect it to a 3.3V step-down
converter, which powers the sensor node.

When the solar panel is in direct sunlight it produces over 6V. In our first
test we got 6.08V. It also has a current of 0.430 Amps in sunlight. Knowing
the voltage and the power, we find that the solar panel produces a little over
2.5 Watts, exactly what we should expect. Having our power circuit connected
correctly, we were able to power the sensor node device with no issues while
having the batteries charging at the same time. This test indicates that as
long as there is sunlight, the sensor node will always receive enough power to
transmit and remain on.

To make sure the sensor node can be powered all through the night when
there is no sun, we had to check the batteries to make sure they would last at
least 12 hours with no power coming from the solar panel. The first batteries
we tested were two 3.7V UltraFire lithium ion cell batteries in parallel rated
at 1200mAH each. However, after leaving the device running for a few hours
after the batteries were fully charged, the batteries stopped producing enough
current to power the device after only a few hours. Next, we tested a lithium
ion polymer battery also rated 1200mAH. This time, the battery lasted longer
than 8 hours while still providing enough current to the sensor node. While
this did not last the 12 hours we were hoping for, we did not have the funds
to purchase batteries rated at a higher level. If we had the budget, we would
have gone with a battery rated at 2000 mAH LiPo battery for each node, so we
could be sure it would last 12 hours.

We tested the voltage of the 1200mAH battery and saw how voltage changed
over time in the sun. We tested how the voltage increased with the solar panel
charging it, and also how it decreased when the solar panel was not charging
it. Below are graphs that show the voltage of the battery over time, where we
took measurements every ten seconds.

25



Figure 14: Battery Charge Test Over Time

Figure 15: Battery Discharge Test Over Time

26



2.3.11 ER9: GPS Test

The GPS module we chose for our project is the GP-20U7. The first test
we conducted with the GPS module was to test if we could get NMEA data
from it and display it on a serial monitor. We found that while we were inside,
the NMEA data would be incomplete as it could not acquire the satellites.
However, when we took it outside, we were able to see the full NMEA data we
were expecting. Using several GPS libraries in our code, we were able to get
latitude and longitude coordinates.

For the second test, we needed to be able to ensure that the GPS coor-
dinates were accurate. We tested this by comparing the value read from the
module with the coordinates from a hand held GPS device. (results here)

For the third test, we needed to measure out the radius required for the
mobile node to be within with sensor node for transmission. From previous tests
(see test 7), we know that the Xbees can transmit out to over 1000ft, thus we
have a lot of room to work with when it comes to the radius around the sensor
node we need to make with the GPS. We wanted to test out a 300ft radius (see
figure 14), but found it difficult to find a large enough open space for this test.
So instead we did a 100ft radius and scaled the measurements to 300ft.

Distance Latitude (GPS
Module)

Longitude (GPS
Module)

Latitude (Control) Longitude (Control)

Origin 38.339182 -122.669337 38.339200 -122.669212
50ft (N) 38.339324 -122.669335 38.339412 -122.668528
100ft (N) 38.339459 -122.669325 38.339564 -122.669252
Difference (50ft) -0.000142 -2E-06 -0.000212 -0.000684
Difference (100ft) -0.000277 -1.2E-05 -0.000364 -0.00096

50ft (S) 38.339006 -122.669325 38.339120 -122.069401
100ft (S) 38.339952 -122.669308 38.339021 -122.069530
Difference (50ft) 0.000116 -1.2E-05 8E-05 0.000189
Difference (100ft) 0.00023 -2.9E-05 0.000179 0.000318

50ft (E) 38.339210 -122.669506 38.339187 -122.069565
100ft (E) 38.339207 -122.669653 38.339242 -122.069633
Difference (50ft) -2.8E-05 0.000169 1.3E-05 0.000353
Difference (100ft) -2.5E-05 0.000316 -4.2E-05 0.000421

50ft (W) 38.339234 -122.669150 38.339234 -122.069138
100ft (W) 38.339218 -122.669985 38.339200 -122.069011
Difference (50ft) -6.2E-05 -0.000187 -3.4E-05 -7.4E-05
Difference (100ft) -3.6E-05 -0.000352 0 -0.000201

Table 6: GPS Value Table

For the final test, we used a preliminary 50ft radius and tested the mobile
node’s ability to determine its location. When the mobile node entered into the
50ft radius around the sensor node, it began transmitting the flag to tell the

27



sensor node to begin transmitting its data.

Figure 16: Plot of proximity Mobile Node must be within Sensor Node to com-
municate

2.3.12 ER9/MR5: Downed Node Test

In this test, we needed to be sure that the mobile node could handle a
situation where a sensor node didn’t respond for whatever reason. What it does
is once it is within proximity of the sensor node, after a period of 1 minute, if no
data is received, the mobile node will save a message onto the SD card indicating
something went wrong. When the user tries to save the data onto their computer
via the program we provided, said program will display a message saying which
node is being unresponsive.

2.3.13 ER5/MR3: Sensor Tests

All three sensor nodes will be using the same exact sensors and same number
of sensors. In this project, each sensor node will have a temperature sensor,
humidity sensor, and soil moisture sensor. This totals nine different sensor
readings for 3 different kinds of sensors.

Our first sensor is a DS18B20 waterproof digital temperature sensor. It
requires a 1-wire interface plus Vcc and ground. It has a -55 to 125 degree
Celsius temperature range. The probe is 7mm in diameter and 26mm long.
The complete length of the temperature sensor is 6 feet. We calibrated this
sensor by conducted a simple ice bath where we stirred its probe in a cup of
the correct ice to water ratio until 0 degrees Celsius was reached. We were able
to run a simple program where we were able to see the current degree values
on our serial monitor. According to the DS18B20 data sheet, this temperature
sensor has a 0.5 degree accuracy within the -10 to 85 degree Celsius range.

28



Figure 17: DS18B20 Weatherproof Temperature Sensor

Figure 18: Temperature Probe in Ice Bath

Figure 19: Temperature Sensor Serial Monitor Results

Our second sensor is a SHT10 digital soil moisture sensor by Sensirion. It is
a 4-wire Sensirion chip inside a sinter metal mesh encasing to be placed in soil.
The casing is weatherproof and meant to be placed in soil over long periods of

29



time. According to the SHT10 data sheet, it has a 4.5 percent accuracy relative
humidity reading, 14mm diameter and 50mm long sensor. It is interfaced using
I2C and the cable itself is a meter long. We tested our soil moisture sensors by
comparing them with a high-quality Hydrosense II Soil Moisture Measurement
System by Campbell-Scientific. The Hydrosense II is a portable, handheld de-
vice for easily obtaining soil measurements. It contains a 12cm probe and a large
LCD display. It has a 3 percent volumetric water content accuracy and out-
puts percentages from 0-50 percent. We conducted this test at the Pepperwood
Preserve in Santa Rosa.

Figure 20: Left: Our SHT10 Soil Sensor by Sensirion Right: The AM2315
Humidity Sensor by AOSONG

Figure 21: Left: Soil Moisture Test Location Right: Patch of soil

Our third Sensor is a AM2315 Digital Humidity Sensor by AOSONG. Sim-
ilar to the Soil Moisture Sensor, it requires an I2C communication and only uses
4 wires. The body size is 98mm by 16mm and the cable itself is 20 inches long.
It has a 0-100 percent humidity reading according to the AM2315 datasheet.
We compared our humidity results using the Dwight Weather Station at the
Pepperwood Preserve. Values were adjusted accordingly.

30



Figure 22: Left: Hydrosense II screenshot Right: Hydrosense probe in soil

Figure 23: Humidity at Pepperwood Preserve Dwight Center Weather Station

31



2.3.14 ER5/ER6/MR9: Solar-Powered Ground-Based Sensor Node

After placing all of our sensors onto one board, we placed the complete
sensor circuit, which is composed of the Uc32 board, Xbee Shield, Xbee, our
3 sensors, a real-time clock module, and the micro SD card module, into the
Sensor Node case.

Here we show our complete sensor and power circuit in our weatherproof
casing. Our case is made of PVC with 4 holes fitted for conduit tubes. Holes
that are not used are covered with stoppers. This casing is originally made to
provide power outlets from a concrete floor. We placed our case onto a wooden
board then hung onto an outdoors U-post.We also placed the solar panel right
above the case.

Figure 24: A look inside a sensor node case

Figure 25: An outdoor photo of a complete sensor node with solar panel

32



2.3.15 MR7: MATLAB Test

For this test, we are testing the code and capabilities of the Matlab program
we created for our project. The program is used to pull the data off of the SD
card from the mobile node and converts the CSV file to a more palatable excel
file with titles on the data sets and save it all on the user’s computer. It also
removes the old data from the SD card for the user to prevent repeated data.
Lastly, the program allows the user to program the GPS coordinates of the
sensor nodes for the mobile node’s GPS proximity functionality.

Figure 26: Program Successfully Saving GPS Coordinates

The program was able to save the GPS coordinates into a CSV file that the
mobile node can read off of its SD card to know what coordinates each sensor
node is at.

Along with this, we were able to successfully pull data saved by the mobile
node onto the same SD card and save it onto the user’s computer as an excel
file in a more readable format and delete the old data.

33



2.3.16 MR12: Long Term Test

It is important to know how long our system can run before receiving errors
or missing data. In our preliminary long term test we left our sensor and mobile
nodes on all night by plugging them in the computers in the design lab. Our
sensor node was transmitting whatever was in its serial port every half hour.
We started the test around 7:30 pm on Tuesday February 7. The next day we
checked our data around 10:00 am Wednesday February 8 and were pleased that
no data was missing or corrupted. Below is a screen shot of the data from the
SD card. This preliminary test lasted for about 15 hours.

Figure 27: Screen shot of 15 hour long term data in thirty minute intervals

34



After seeing how the data was collected inside, we wanted to make sure the
data would be collected just as well outside. When we got a weatherproof case
for each device, we took all three sensor nodes we made and put them outside
to test. Like stated previously in the Solar Charger Test, the batteries did not
last the whole night. Since this was the case, we also had to ensure that the
sensor node device would start running again as soon as the batteries charged
up, which they did. The data was correctly stored onto the micro SD card when
left outside. Here are the results of one of the tests we ran:

Figure 28: Sensor node device ran from around 9:00 am to around 5:00 am the
next day

35



2.3.17 MR4/ER1/ER4: UAV Test

One of the main goals of our project is to have a mobile node attached to a
UAV fly over the sensor nodes and collect data wirelessly from the air. Thus, we
had to test to make sure this was possible. For this test, we attached our mobile
node to an Aerotestra UAV. Once the sensor node was placed on the ground,
the UAV was programmed to fly over the sensor node, hover there, and come
back. We did this test three times, with each time checking the SD card for the
data. The first time we did it, we had the UAV hover over the sensor node for
five minutes at 90 feet. The second time we had it hover for three minutes at
50 feet and the last one for one minute at 50 feet. We found that the mobile
device was able to collect all the data within a minute. We were able to collect
the data from the sensor node and efficiently and as planned. However, there
was a several data strings that were corrupted from the data we collected. We
later resolved this issue by changing how the data is transmitted. Instead of
transmitting a single packet of data, the sensor node transmits one data string
at a time.

Figure 29: Picture of Abraham Palmerin with Sean Headrick piloting the UAV

36



2.3.18 MR3/ER4/ER5/ER9: Moving Mobile Node Test

For this test, we simulated what our project is hoping to accomplish. We
set up three sensor nodes around Sonoma State University, each with a specified
GPS location. The mobile node was moved around by car, and was driven by
each of the nodes on the ground. When the mobile node was done collecting
the data, a LED would light up to let the driver know to move on to the next
sensor node and see how long it takes to collect data. The test was successful,
with the environmental data being collected as soon as the mobile node got in
range. However, one of the sensor node’s battery was not charged fully and thus
did not transmit any data. After powering the device to a computer, we got the
data. This test showed that our project is fully working.

In this test we used a 50 ft. radius around the sensor nodes, so they would
transmit as soon as the mobile node got close enough. We also calculated what
a 200 ft. radius would look like, which is closer to what we will be using in the
final product.

Figure 30: Left: 50 ft Radius. Right: 200 ft Radius.

37



2.3.19 Final Test

In our final test, we mounted the mobile node to a UAV and set it to
autonomously fly to the three nodes. We set the mobile node to begin transmis-
sion at 200 ft. Each sensor node was placed at various locations at the Fairfield
Osborn Preserve in Rohnert Park, Ca.

The UAV was able to successfully fly to each, it hovered for 10 seconds
at each node to ensure a complete transmission. We ran into few problems
involving power to the third sensor node and receiving power from the UAV to
the mobile node. After a few hours of troubling shooting the problems, we were
able to do a successful test, gathering real sensor data from each node. The
figure below shows the flight path of the UAV along with the 200 ft GPS radius
that the mobile node did the transmission in along with the data from the test
after being processed by our Matlab program.

Figure 31: Fairfield Osborn Preserve: Left: UAV Flight Path with 200 ft Radii
Right: Data in Excel

38



2.4 Hardware Design

Figure 32: System Diagram of Mobile Node

Figure 33: System Diagram of Sensor Node

39



3 Ethics of the Engineering Profession and Our
Project

Like any field, ethics is important to engineering. There are a variety of
things to consider when it comes to being ethical in our field. In the case of
our project here are some things we must consider to ensure it was done in an
ethical manner. One issue is when a team doesnt make due on the promises
that they make on their product. We will ensure that we complete the aspects
of our project that we promised we would complete. If any mistake is made
during development we will take responsibility for our actions. Any reference
used will be appropriately credited and we will not take credit for anything that
we didnt do ourselves. Members of the group will not disclose information that
is not intended for the public whether it be just among the group or on behalf
of Sonoma State and its preserves or Aerotestra Inc.

In our case, we have been allotted a UAV shell by Aerotestra Inc. to work
with because we will be using their UAV for the final product. Thus it would
be prudent to use the donated materials respectfully and to make good use of
them. Going further on the subject of UAVs, the FAA requires that a licensed
personnel is present at all times while a UAV is being flown and that said UAV
must been within view of said person. Thus, we will ensure that we will have
such a person present while we are testing with the UAV. We will also ensure
that our product is not left on the site where it is being used once it is no longer
being used and thus not pollute the preserve that it is located at. When it
comes to the funding that we will receive we will make good of use of it. We
will spend it only on materials needed for the product and nothing else.

When it comes to the use of the device itself we will make sure that it
will follow a set of key guidelines. The devices will provide reliable data and
the devices themselves will be safe to use and do no harm to the user or the
environment that it is placed in. The devices will work as promised and follow
all IEEE standards that must be followed.

40



4 Future Work

Our project is a complete working product. However, that is not to say
there could be improvements made to our design for future works, or new ideas
using our existing project. There are a few features and ideas that could be
looked at in the future:

1. Make the system completely autonomous. The UAV will be scheduled
to go at different times and collect the data without having the user be
present.

2. Using our sensor nodes, make a network where each sensor node is con-
nected together and sends the data to a central node when asked. That
way the UAV only has to go to one location instead of going node to node.

3. Have the data from the sensor nodes display data in real time

4. Make sensor nodes more modular for different sensors

5. Include some form a data checking to the transmission handshake (eg a
checksum, parity bit, etc) to further improve data transmission reliability.

6. Change over from uC32 and WF32 boards to independent microcontrollers
to further reduce size and cost of the nodes.

7. More user friendly GPS coordinate set up. (eg user could carry mobile
node around while setting up sensor nodes and it keeps track of locations
automatically).

8. Implement a data archiving system, where sensor nodes store old data in
separate files in their memory and the user can set the mobile node to ask
for old data if they want.

41



5 References

[1] ”Airborne data system,” DroneScan, 2016. [Online]. Available:
http://www.dronescan.co/. Accessed: Oct. 4, 2016.

[2] R. Journal, ”RFID-Reading drone tracks structural steel prod-
ucts in storage yard - page 1,” 2014. [Online]. Available:
http://www.rfidjournal.com/articles/view?12209. Accessed: Oct. 4,
2016.

[3] J. Gabay, ”RF links for civilian drones,” 2015. [Online]. Avail-
able: http://www.digikey.com/en/articles/techzone/2015/jan/rf-links-for-
civilian-drones. Accessed: Oct. 4, 2016.

[4] ”Remote sensing using UAVs,” 2016. [Online]. Available:
https://people.kth.se/ gonga/remoteuav.html. Accessed: Oct. 4, 2016.

[5] H. Xiang and L. Tian, ”Development of a low-cost agricul-
tural remote sensing system based on an autonomous un-
manned aerial vehicle (UAV),” Biosystems Engineering, vol.
108, no. 2, pp. 174190, Feb. 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1537511010002436.
Accessed: Oct. 4, 2016.

[6] L. Reich, ”Breakdown of drone remote sensing sensors,”
in Drones, Geoawesomeness, 2016. [Online]. Available:
http://geoawesomeness.com/breakdown-drone-remote-sensing-sensors/.
Accessed: Oct. 4, 2016.

[7] E. Marris, ”Drones in science: Fly, and bring me data,” News Fea-
ture, vol. 498, no. 7453, p. 156, Jun. 2013. [Online]. Available:
http://www.nature.com/news/drones-in-science-fly-and-bring-me-data-
1.13161. Accessed: Oct. 4, 2016.

[8] ”UAV and GISAn emerging dynamic duo,” 2014. [Online]. Avail-
able: http://www.esri.com/esri-news/arcuser/spring-2014/uav-and-gis-an-
emerging-dyn amic-duo. Accessed: Oct. 4, 2016.

[9] A. Rosenblum, ”Nanosatellites will stop the Internet of things from
ever going Offline,” MIT Technology Review, 2015. [Online]. Available:
https://www.technologyreview.com/s/538726/nano-satellites-work-with-
ground-s ensors-to-offer-new-eye-on-disaster-relief-and/. Accessed: Oct. 4,
2016.

[10] ]”Spott-weiss,” spott-weiss. [Online]. Available:
http://spott79.wixsite.com/spott-weiss. Accessed: Nov. 27, 2016.

42



6 Appendix

6.1 Detailed Budget

Quantity Part Price Description Link
3 1200 mAh LiPo

Battery
$9.95 each Batteries used to

power sensor nodes
https://www.adafruit
.com/product/258

3 Digilent chipKIT
uC32

$29.95 each Boards used for
sensor nodes

http://tinyurl.com
/kpkkdr2

1 Digilent chipKIT
WF32

$69.99 Board used for
mobile node

http://tinyurl.com
/le8cgf9

4 Xbee S3 Pro Radio
Module

$39.00 each Modules used for
wireless
communication

http://tinyurl.com
/kpfw7n5

4 Xbee Breakout
Board

$10.00 each Board used to
mount Xbees on

https://www.adafrui
t.com/product/126

3 Temperature
Sensors

$9.95 each Sensors to measure
temperature

https://www.sparkfun
.com/products/11050

3 Humidity Sensors $29.99 each Sensors to measure
humidity

https://www.adafruit
.com/product/1293

3 Soil Moisture
Sensors

$49.95 each Sensors to measure
soil moisture

https://www.adafruit
.com/product/1298

3 Weather Proof
Casings

$14.97 each Casings for sesnor
nodes

http://tinyurl
.com/m5lzzbw

1 GPS Module $4.99 each Module to get GPS
coordiantes

https://www.sparkfun
.com/products/13740

3 Real Time Clocks $5.99 each Record the time
when data is
collected

http://tinyurl
.com/lnbfhau

3 Solar Panels $8.99 each Solar Panels to
charge batteries

http://tinyurl
.com/mgcq2yg

4 900 MHz Duck
Antennas

$7.95 each Increase the range of
transmission

https://www.sparkfun
.com/products/9143

4 Xbee Shield $6.00 each Shield for the UC32
board

http://tinyurl
.com/kewud4e

4 16 GB Mirco SD
Card

$6.95 each SD card to save data http://tinyurl.com
/ktenoxh

3 Micro SD Card
Module

$7.95 each SD card Module for
UC32

https://www.adafruit
.com/product/254

3 3.3V Buck
Converter

$4.95 each Regulate voltage to
UC32

https://www.adafruit
.com/product/2745

3 LiPo Battery
Charger Board

$5.99 each Charger board http://tinyurl
.com/l8czpoj

Total Cost $ 860.53

Table 7: Complete Budget

43



6.2 Example Customer Survey

Customer Survey: 
Data Harvester 

 
Customer Name:_________________ 

 
Please fill out this survey and send it back to us as soon as possible.  

 Answer (yes/no) Comments 

Don’t have the time to 
walk/hike to remotely 
placed sensors 

no Depends on how often I 
have to 

Need to collect remote 
sensor data regularly. 

no  

Want to be able to collect 
remote data automatically.  

yes  

Do you have sensors 
gathering data in hard to 
reach locations? 

yes  

If it were easy, would you 
like to have remote 
sensors? 

yes  

Would you like to learn or 
are you interested in 
exploring the possibilities 
of drone technology in the 
environment? 

yes  

 
If you are interested in this project, please fill out our second survey on the next page, if 
not simply fill out this first one as best you can. 
 
Otherwise, thank you for your time, we appreciate your input. 
 
 
 
 
 
 
 
 

Please fill out this survey if you are interested in our project: 

 Answer (yes/no) comments 

Are you interested in gather 
environmental data? 
(temperature, humidity, soil 
moisture, etc) 

yes  

Would you be willing to get a 
drone flying license from the 
FAA? 

yes If it isn’t too expensive in 
time or money 

Would you be interested in 
having a modular system that 
allows for the use of any kind 
of sensor? 

yes  

Would you want to fly the 
drone yourself? 

  

Would you rather the drone 
be autonomous?  

no Depends but not likely 

You would like the data to be 
stored on a removable SD 
card? 

yes  

You would like the data to be 
uploaded to a computer 
automatically via bluetooth? 

yes  

Is there a specific period of 
time that you want to gather 
your data? (daily, weekly, 
monthly, etc) 

Don't know  

 
 
Thank you for your input, we appreciate you spending the time to help us in our endeavors. 
 
The Data Harvester Team: 
Taylor Jones 
Abe Palmerin 
Josh Papanicolas  
 

It was difficult to find people applicable to this project. Many students
and faculty were not interested in taking our surveys since they had no purpose
of collecting data or using a UAV. Environmentalists and UAV hobbyist were
most interested in the application of our project. We also found out that some
environmentalists preferred to walk far distances to collect the Sensor Node
data themselves rather than a UAV doing it for them. On the other hand, some
people enjoyed the fact that they did not have to go to isolated areas everyday
to get their data.

44



6.3 Circuit Diagrams

6.3.1 Mobile Node

45



6.3.2 Sensor Node

46



6.3.3 Sensor Power Supply

47



7 A Special Thanks

We would like to thank our faculty advisors Dr. Chris Halle and Dr. Farid
Farahmand for their help and support. Our industry advisor, Mr. Sean Head-
rick and Aerotestra for making our final test possible.The SSU SOURCE award
for funding this project and making it possible. MESA coordinator, Dr. Car-
olyn Peruta, for donating soil moisture sensors for this project. Our intern,
Micaela Bush of MESA, at Santa Rosa Junior College for helping us with neces-
sary testing at the Pepperwood Preserve and project documentation. Suzanne
Decoursey, reservations manager at the Fairfield Osborne Preserve, for letting
us test this project at the preserve. Lastly, our friends and family for their
support.

48


